A particular Gaussian mixture model for clustering and its application to image retrieval
نویسنده
چکیده
We introduce a new method for data clustering based on a particular Gaussian mixture model (GMM). Each cluster of data, modeled as a GMM into an input space, is interpreted as a hyperplane in a high dimensional mapping space where the underlying coefficients are found by solving a quadratic programming (QP) problem. The main contributions of this work are (1) an original probabilistic framework for GMM estimation based on QP which only requires finding the mixture parameters, (2) this QP is interpreted as the minimization of the pairwise correlations between cluster hyperplanes in a high dimensional space and (3) it is solved easily using a new decomposition algorithm involving trivial linear programming sub-problems. The validity of the method is demonstrated for clustering 2D toy examples as well as image databases.
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملComparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملImage Segmentation Based on a Finite Generalized New Symmetric Mixture Model with K – Means
In this paper a novel image segmentation and retrieval method based on finite new symmetric mixture model with K-means clustering is developed. Here it is considered that pixel intensities in each image region follow a new symmetric distribution. The new symmetric distribution includes platykurtic and meso-kurtic distributions. This also includes Gaussian mixture model as a particular case. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 12 شماره
صفحات -
تاریخ انتشار 2008